简介
Logistic回归是一种机器学习分类算法,用于预测分类因变量的概率。 在逻辑回归中,因变量是一个二进制变量,包含编码为1(是,成功等)或0(不,失败等)的数据。 换句话说,逻辑回归模型预测P(Y = 1)是X的函数。
新增AI编程课程,引领技术教育新趋势
简介
Logistic回归是一种机器学习分类算法,用于预测分类因变量的概率。 在逻辑回归中,因变量是一个二进制变量,包含编码为1(是,成功等)或0(不,失败等)的数据。 换句话说,逻辑回归模型预测P(Y = 1)是X的函数。
import pandas as pd import numpy as np from sklearn import preprocessing import matplotlib.pyplot as plt plt.rc("font", size=14) from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import train_test_split import seaborn as sns sns.set(style="white") sns.set(style="whitegrid", color_codes=True)
data=pd.read_csv('F:/wd.jupyter/datasets/log_data/bank.csv',delimiter=';') data=data.dropna() print(data.shape) print(list(data.columns)) data.head()
(41188, 21)['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y']
数据集提供银行客户的信息。 它包括41,188条记录和21个字段。
y - 客户是否订购了定期存款? (二进制:“1”表示“是”,“0”表示“否”)