一 高斯朴素贝叶斯分类器代码实现
- 网上搜索不调用sklearn实现的朴素贝叶斯分类器基本很少,即使有也是结合文本分类的多项式或伯努利类型,因此自己写了一遍能直接封装的高斯类型NB分类器,当然与真正的源码相比少了很多属性和方法,有兴趣的可以自己添加。代码如下(有详细注释):
class NaiveBayes(): '''高斯朴素贝叶斯分类器''' def __init__(self): self._X_train = None self._y_train = None self._classes = None self._priorlist = None self._meanmat = None self._varmat = None def fit(self, X_train, y_train): self._X_train = X_train self._y_train = y_train self._classes = np.unique(self._y_train) priorlist = [] meanmat0 = np.array([[0, 0, 0, 0]]) varmat0 = np.array([[0, 0, 0, 0]]) for i, c in enumerate(self._classes): X_Index_c = self._X_train[np.where(self._y_train == c)] priorlist.append(X_Index_c.shape[0] / self._X_train.shape[0]) X_index_c_mean = np.mean(X_Index_c, axis=0, keepdims=True) X_index_c_var = np.var(X_Index_c, axis=0, keepdims=True) meanmat0 = np.append(meanmat0, X_index_c_mean, axis=0) varmat0 = np.append(varmat0, X_index_c_var, axis=0) self._priorlist = priorlist self._meanmat = meanmat0[1:, :] self._varmat = varmat0[1:, :] def predict(self,X_test): eps = 1e-10 classof_X_test = [] for x_sample in X_test: matx_sample = np.tile(x_sample,(len(self._classes),1)) mat_numerator = np.exp(-(matx_sample - self._meanmat) ** 2 / (2 * self._varmat + eps)) mat_denominator = np.sqrt(2 * np.pi * self._varmat + eps) list_log = np.sum(np.log(mat_numerator/mat_denominator),axis=1) prior_class_x = list_log + np.log(self._priorlist) prior_class_x_index = np.argmax(prior_class_x) classof_x = self._classes[prior_class_x_index] classof_X_test.append(classof_x) return classof_X_test def score(self, X_test, y_test): j = 0 for i in range(len(self.predict(X_test))): if self.predict(X_test)[i] == y_test[i]: j += 1 return ('accuracy: {:.10%}'.format(j / len(y_test)))
- 对于手动实现的高斯型NB分类器,利用鸢尾花数据进行测试,与调用sklearn库的分类器结果差不多,基本在93-96徘徊。这是由于多次进行二八切分,相当于多次留出法。为计算更准确精度,可进行交叉验证并选择多个评价方法,这里不再实现。
import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import preprocessing # 获取数据集,并进行8:2切分 iris = datasets.load_iris() X = iris.
关键字: