目录
Context-Aware Network Embedding for Relation Modeling
论文:http://www.aclweb.org/anthology/P17-1158
创新点:
- 考虑属性连边关系
- 引入卷积神经网络
- 结构信息借助深层网络表示,将不同节点间关联信息融入CNN中
- 基于TensorFlow 架构实现CNN
基于上下文感知网络嵌入的关系建模
本文主要针对目前存在的 NE 方法对于每个顶点仅有一个简单 embedding,没有考虑到网络节点根据不同的交互对象会展现出不同交互特性的缺陷,提出了上下文敏感的网络表示(CANE)。
- 首先通过 cnn 得到网络顶点的一个 embedding(context-free embedding)
- 之后通过计算该节点与相邻节点的 mutual attention(在 pooling 层引入一个相关程度矩阵),得到顶点针对该相邻节点的 context-aware embedding
- 最终顶点的 embedding 表示由这两个 embedding 结合得到
上下文感知的网络嵌入框架:
无上下文嵌入: 与不同邻居交互时,嵌入保持不变
上下文感知嵌入:面对不同邻居时动态
network embedding(网络嵌入方法)
学习网络中节点的低维潜在表示,学到的特征用来:用作基于图的各种任务特征:分类,聚类,链路预测
出现背景:信息网络可能包含数十亿个节点和边缘,因此在整个网络上执行复杂的推理过程可能会非常棘手
中心思想:找到一种映射函数,该函数将网络中的每个节点转换为低维度的潜在表示
总结
任务
给定:节点描述信息,及其交互信息
目标:使用低维有效的向量表示节点信息
背景
1. 与不同邻居交互时,展示不同的方面(如研究人员以不同研究主题与合作伙伴合作,用户分享不同兴趣给不同邻居,网页链接到不同页面用于不同目的)
2. 现有 NE 方法:
(1)与不同邻居交互时,不能灵活处理侧重点转换
(2) 限制顶点间的交互关系:如AB分享不同兴趣,但却彼此相近,因为由中间人联系
1. 概述
现有方法:无上下文嵌入,与其他顶点交互时忽略不同角色
提出:上下文相关的网络嵌入(CANE)
通过相互关注机制学习顶点的上下文感知嵌入
CANE:应用在基于文本的信息网络
利用节点丰富的外部信息:文本、标签、其他元数据
此处上下文关系更重要
