使用SSD目标检测c++接口编译问题解决记录

本来SSD做测试的Python接口用起来也是比较方便的,但是如果部署集成的话,肯定要用c++环境,于是动手鼓捣了一下。 编译用的cmake,写的CMakeList.txt,期间碰到一些小问题,简单记录一下问题以及解决方法。 当然前提是你本地的caffe环境没啥问题。各种依赖都安好了。。 1.error: ‘AnnotatedDatum’ has not been declared AnnotatedDatum* anno_datum); 复制代码 /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:192:40: error: ‘AnnotatedDatum_AnnotationType’ does not name a type const std::string& encoding, const AnnotatedDatum_AnnotationType type, ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:194:5: error: ‘AnnotatedDatum’ has not been declared AnnotatedDatum* anno_datum); ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:199:11: error: ‘AnnotatedDatum_AnnotationType’ does not name a type const AnnotatedDatum_AnnotationType type, const string& labeltype, ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:200:49: error: ‘AnnotatedDatum’ has not been declared const std::map& name_to_label, AnnotatedDatum* anno_datum) { ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:208:5: error: ‘AnnotatedDatum’ has not been declared AnnotatedDatum* anno_datum); ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:212:5: error: ‘AnnotatedDatum’ has not been declared AnnotatedDatum* anno_datum); ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:215:22: error: ‘AnnotatedDatum’ has not been declared const int width, AnnotatedDatum* anno_datum); ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:218:30: error: ‘LabelMap’ has not been declared const string& delimiter, LabelMap* map); ^ /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:221:32: error: ‘LabelMap’ has not been declared bool include_background, LabelMap* map) { ^ 复制代码 这个问题拿去google了一下,https://github.com/BVLC/caffe/issues/5671提示说是 caffe.pb.h这个文件有问题。 在本地find了一下, 发现是有这个文件的, 于是在/ssd/caffe/include/caffe下 mkdir一下 proto,然后把 caffe.bp.h 复制过来就好了。 如果没有 caffe.pb.h可以用命令生成这个文件,生成方法google一下就好了。。。。 2.链接库的问题。错误提示说明用到了这个库,但是程序没找到。在CMakeList.txt里填上 libflags.so即可 ,其他so库同理。 复制代码 /usr/bin/ld: CMakeFiles/ssd_detect.dir/ssd_detect.cpp.o: undefined reference to symbol '_ZN6google14FlagRegistererC1EPKcS2_S2_S2_PvS3_' /usr/lib/x86_64-linux-gnu/libgflags.so.2: error adding symbols: DSO missing from command line collect2: error: ld returned 1 exit status CMakeFiles/ssd_detect.dir/build.make:102: recipe for target 'ssd_detect' failed make[2]: *** [ssd_detect] Error 1 复制代码 这个是CMakeList.txt内容。 就是指定好include路径,还有需要用到的各种库的路径。 复制代码 cmake_minimum_required (VERSION 2.8) add_definitions(-std=c++11) project (ssd_detect) add_executable(ssd_detect ssd_detect.cpp) include_directories (/home/yourpath/ssd/caffe/include /usr/include /usr/local/include /usr/local/cuda/include ) target_link_libraries(ssd_detect /home/yourpath/ssd/caffe/build/lib/libcaffe.so /usr/local/lib/libopencv_core.so /usr/local/lib/libopencv_imgproc.so /usr/local/lib/libopencv_imgcodecs.so /usr/local/lib/libopencv_highgui.so /usr/local/lib/libopencv_videoio.so /usr/lib/x86_64-linux-gnu/libgflags.so /usr/lib/x86_64-linux-gnu/libglog.so /usr/lib/x86_64-linux-gnu/libprotobuf.so /usr/lib/x86_64-linux-gnu/libboost_system.so ) 复制代码 3.发现github上下载的默认的ssd_detect.cpp默认没有添加 using namespace std; 添加之后,会有错误。 error: reference to ‘shared_ptr’ is ambiguous 复制代码 ssd_detect.cpp:54:3: error: reference to ‘shared_ptr’ is ambiguous shared_ptr > net_; ^ In file included from /usr/include/c++/5/bits/shared_ptr.h:52:0, from /usr/include/c++/5/memory:82, from /usr/include/boost/config/no_tr1/memory.hpp:21, from /usr/include/boost/smart_ptr/shared_ptr.hpp:23, from /usr/include/boost/shared_ptr.hpp:17, from /home/jiawenhao/ssd/caffe/include/caffe/common.hpp:4, from /home/jiawenhao/ssd/caffe/include/caffe/blob.hpp:8, from /home/jiawenhao/ssd/caffe/include/caffe/caffe.hpp:7, from /data/jiawenhao/ssdtest/ssd_detect.cpp:16: /usr/include/c++/5/bits/shared_ptr_base.h:345:11: note: candidates are: template class std::shared_ptr class shared_ptr; ^ In file included from /usr/include/boost/throw_exception.hpp:42:0, from /usr/include/boost/smart_ptr/shared_ptr.hpp:27, from /usr/include/boost/shared_ptr.hpp:17, from /home/jiawenhao/ssd/caffe/include/caffe/common.hpp:4, from /home/jiawenhao/ssd/caffe/include/caffe/blob.hpp:8, from /home/jiawenhao/ssd/caffe/include/caffe/caffe.hpp:7, from /data/jiawenhao/ssdtest/ssd_detect.cpp:16: /usr/include/boost/exception/exception.hpp:148:11: note: template class boost::shared_ptr class shared_ptr; ^ /data/jiawenhao/ssdtest/ssd_detect.cpp: In constructor ‘Detector::Detector(const string&, const string&, const string&, const string&)’: /data/jiawenhao/ssdtest/ssd_detect.cpp:71:3: error: ‘net_’ was not declared in this scope net_.reset(new Net(model_file, TEST)); 复制代码 在shared_ptr > net_前面添加上boost即可。 复制代码 boost::shared_ptr > net_; 复制代码 修改后的ssd_detect.cpp源码如下: 复制代码 // This is a demo code for using a SSD model to do detection. // The code is modified from examples/cpp_classification/classification.cpp. // Usage: // ssd_detect [FLAGS] model_file weights_file list_file // // where model_file is the .prototxt file defining the network architecture, and // weights_file is the .caffemodel file containing the network parameters, and // list_file contains a list of image files with the format as follows: // folder/img1.JPEG // folder/img2.JPEG // list_file can also contain a list of video files with the format as follows: // folder/video1.mp4 // folder/video2.mp4 // #define USE_OPENCV 1 #include #ifdef USE_OPENCV #include #include #include #endif // USE_OPENCV #include #include #include #include #include #include #include #ifdef USE_OPENCV using namespace caffe; // NOLINT(build/namespaces) using namespace cv; using namespace std; class Detector { public: Detector(const string& model_file, const string& weights_file, const string& mean_file, const string& mean_value); std::vector > Detect(const cv::Mat& img); private: void SetMean(const string& mean_file, const string& mean_value); void WrapInputLayer(std::vector* input_channels); void Preprocess(const cv::Mat& img, std::vector* input_channels); private: boost::shared_ptr > net_; cv::Size input_geometry_; int num_channels_; cv::Mat mean_; }; Detector::Detector(const string& model_file, const string& weights_file, const string& mean_file, const string& mean_value) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif /* Load the network. */ net_.reset(new Net(model_file, TEST)); net_->CopyTrainedLayersFrom(weights_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ SetMean(mean_file, mean_value); } std::vector > Detector::Detect(const cv::Mat& img) { Blob* input_layer = net_->input_blobs()[0]; input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); /* Forward dimension change to all layers. */ net_->Reshape(); std::vector input_channels; WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */ Blob* result_blob = net_->output_blobs()[0]; const float* result = result_blob->cpu_data(); const int num_det = result_blob->height(); vector > detections; for (int k = 0; k < num_det; ++k) { if (result[0] == -1) { // Skip invalid detection. result += 7; continue; } vector detection(result, result + 7); detections.push_back(detection); result += 7; } return detections; } /* Load the mean file in binaryproto format. */ void Detector::SetMean(const string& mean_file, const string& mean_value) { cv::Scalar channel_mean; if (!mean_file.empty()) { CHECK(mean_value.empty()) << "Cannot specify mean_file and mean_value at the same time"; BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob */ Blob mean_blob; mean_blob.FromProto(blob_proto); CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */ std::vector channels; float* data = mean_blob.mutable_cpu_data(); for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data); channels.push_back(channel); data += mean_blob.height() * mean_blob.width(); } /* Merge the separate channels into a single image. */ cv::Mat mean; cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image * filled with this value. */ channel_mean = cv::mean(mean); mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean); } if (!mean_value.empty()) { CHECK(mean_file.empty()) << "Cannot specify mean_file and mean_value at the same time"; stringstream ss(mean_value); vector values; string item; while (getline(ss, item, ',')) { float value = std::atof(item.c_str()); values.push_back(value); } CHECK(values.size() == 1 || values.size() == num_channels_) << "Specify either 1 mean_value or as many as channels: " << num_channels_; std::vector channels; for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(input_geometry_.height, input_geometry_.width, CV_32FC1, cv::Scalar(values[i])); channels.push_back(channel); } cv::merge(channels, mean_); } } /* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */ void Detector::WrapInputLayer(std::vector* input_channels) { Blob* input_layer = net_->input_blobs()[0]; int width = input_layer->width(); int height = input_layer->height(); float* input_data = input_layer->mutable_cpu_data(); for (int i = 0; i < input_layer->channels(); ++i) { cv::Mat channel(height, width, CV_32FC1, input_data); input_channels->push_back(channel); input_data += width * height; } } void Detector::Preprocess(const cv::Mat& img, std::vector* input_channels) { /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; cv::Mat sample_resized; if (sample.size() != input_geometry_) cv::resize(sample, sample_resized, input_geometry_); else sample_resized = sample; cv::Mat sample_float; if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3); else sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized; cv::subtract(sample_float, mean_, sample_normalized); /* This operation will write the separate BGR planes directly to the * input layer of the network because it is wrapped by the cv::Mat * objects in input_channels. */ cv::split(sample_normalized, *input_channels); CHECK(reinterpret_cast(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data()) << "Input channels are not wrapping the input layer of the network."; } DEFINE_string(mean_file, "", "The mean file used to subtract from the input image."); DEFINE_string(mean_value, "104,117,123", "If specified, can be one value or can be same as image channels" " - would
50000+
5万行代码练就真实本领
17年
创办于2008年老牌培训机构
1000+
合作企业
98%
就业率

联系我们

电话咨询

0532-85025005

扫码添加微信