点击公众号“计算机视觉life”关注,置顶星标更快接收消息!
本文阅读时间约5分钟
对于小白来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦。只有知道这个领域大家现在正在干什么,才能知道自己应该做什么。关注领域内的大牛以及领域内比较著名的实验室,紧跟大牛的脚步,才能走在科研的最前沿。今天CV_life君就帮各位整理了一些现阶段国内外SLAM的著名实验室,大牛以及研究成果,还会附带大牛们的代表性论文,开源代码,以及常用的数据集网址,小白们如果喜欢的话记得分享给朋友哦~
话不多说,上干货!
SLAM领域的大牛
代表论文:
Large-Scale Direct Monocular SLAM(IROS 2015)
Direct Sparse Odometry (2017)
下载链接:
https://jakobengel.github.io/pdf/engel14eccv.pdf(LSD-SLAM)
https://jakobengel.github.io/pdf/DSO.pdf(DSO-SLAM)
源代码:https://github.com/tum-vision/lsd_slam(LSD-SLAM)
https://github.com/JakobEngel/dso(DSO-SLAM)
4. RaúlMurArtal 个人主页:http://webdiis.unizar.es/~raulmur/
西班牙人,现任Facebook Reality Labs的研究科学家,大名鼎鼎的ORB-SLAM的作者。

代表论文:ORB-SLAM: A Versatile and Accurate Monocular SLAM System(2015)
下载链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7219438
源代码:https://github.com/raulmur/ORB_SLAM2
5. Christian Kerl 个人主页:https://vision.in.tum.de/members/kerl
慕尼黑技术大学博士生,DVO的作者,主要研究方向为:使用安装在四旋翼或手持设备上的RGB-D摄像机进行视觉SLAM和3D重建。

代表论文:Dense Visual SLAM for RGB-D Cameras(IROS 2013)
代表论文:3D Mapping with an RGB-D Camera(IEEE Transactions on Robotics, 2014)
下载链接:gtsam: Frank Dellaert's graph-based smoothing and mapping library
SLAM领域著名实验室
好啦~介绍完几个比较经典的算法以及他们的作者,小编还要给大家推荐几个SLAM的主要研究实验室:
1. 苏黎世联邦理工学院的Autonomous System Lab,该实验室主要方向是创建机器人和智能系统,使其能在复杂环境下自主运行。他们还在tango项目上与谷歌合作,负责视觉惯导的里程计,基于视觉的定位和深度重建算法。

5. 浙江大学的CAD&CG国家重点实验室。该实验室在SLAM、AR、三维重建等领域有较大的贡献。其中章国峰教授课题组主攻方向就是视觉SLAM以及三维重构。下面送上章国峰教授的个人主页http://www.cad.zju.edu.cn/home/gfzhang/,大家可以在这里找到章国峰教授的研究成果。

这几个实验室发表了很多SLAM领域的优秀论文,如果小伙伴们对他们的某一个方向感兴趣的话,直接戳进他们的官网,了解他们的项目,阅读他们的论文,我相信你会发现一个精彩的SLAM世界。
SLAM常用数据集
要做好slam,优秀的数据集自然不可或缺的,接下来小编还要为大家介绍几个slam方面常用的数据集:
1. KITTI 装备4个相机、高精度GPS/IMU和激光雷达,在城市道路采集的数据。
