经过前面研究图像算法和近阶段研究视频和音频算法的经历经验.
在2019年快要来临的时候,写下这篇小记.
目的很简单,总结过往,展望未来.
这里列举一些本人在算法上踩过的坑和出坑思路.
主要是数据标准化问题.
1.临界值问题 (最大值,最小值,阈值,无穷小,无穷大)
最早做一键修图的时候,在这个坑上踩了太多次.
简单描述就是,
(示例伪代码例子仅供理解思考参考,不具有实际意义)
1.1 梯度消失
如果一个算法在计算过程中,存在最小值(无穷小,一般为0或接近0的数),
那就很可能出现"梯度消失"的问题.
例如:
float weight = 0f; // (或 趋近于0)
float num = 255.0f;
float taget = num/weight;
这种问题最简单的解法就是归一化取值范围,
原来取值范围是 0-255,归一化为 1-256
或转换到对数空间计算然后再转回来.
1.2 梯度爆炸
反之,结果为最大值或者接近无穷大的数,甚至溢出有效范围,那就可能出现"梯度爆炸"的问题.
例如:
int num1 = 255;
int num2 = 256;
unsigned char taget = num1-num2;
clamp 虽搓,但是简单有效,
这个解决思路基本跟梯度消失是一个逻辑,归一化.
1.3 阈值人为主义,非黑即白
采用阈值的做法,除非你清楚的知道你后续计算,
只有两种明确情况,否则不要轻易使用阀值.
int threshold = 127;
if ( num>threshold)
taget = 0;
else
taget = 1;
其实,这三个临界值问题,熟悉深度学习的朋友,
可以类比一下激活函数.
深度学习现有的激活函数,其实并没有很好解决临界值问题,
只是采用规避的策略,降低临界值事件的发生概率.
这里不打算展开讨论,流言止于智者.
2.信息信号属性问题
多维空间与时序序列 的困局
2.1 多维空间
一般多维空间的问题在图像领域比较常见,当然音频领域也有.
例如:
灰度,彩色,YUV空间等.
多维数据绝大多数情况是为了 "信息互补","信息压缩".
也就是预计通过多个维度的信息,互相补充作用,最终合成最佳的信号.
这里最常见的坑就是,多维数据的归一化问题.
因为很有可能,RGB三个通道的颜色分布并不完全一致,
这个时候你要融合RGB三个通道的信息,
就必须考虑将数据归一化到三个通道都适宜的取值范围.
否则,最后合入时,就会出现上面提到的 临界值问题.
基本上只要做好 临界值的处理 就可以规避掉了.
例如图像领域做梯度金字塔融合时候,出现的晕轮效应或强边缘溢色.
当然,还有一种特例,就是评估策略.
当你碰到一个问题,对一张彩色图片,你只能用一个值来表达这张图片的全局情况.
一定要谨记,这个值的得出,必须所有数据参与计算.
不然就会犯多维数据的 阈值人为主义,非黑即白.
这个问题,当年设计一键修图算法的时候,就碰到过.
你怎么判断一张图片的是否需要去雾.
局部有雾或者全局有雾,去雾系数的确认就是这种问题.
2.2 时序序列
时序序列除了 多维空间碰到的问题,它还有更加恼人的问题.
主要是音频数据和文字语义数据的问题.
时序信号最最最严重的问题就是时长和叠加.
也就是一句话的长短,一句话中重叠数据的多少,都有可能推翻所有.
例如:
在一起,好不好.
在一起,不好.
在一起,好.
时序问题绝大多数,数据中某个孤立的数据,反而是决定性因子.
这就有点像,
中国政府某年颁布了什么什么条例.
某某行业消亡了.
时序信号问题,真的就有点大海里去捞针.
