案例:该数据集的是一个关于每个学生成绩的数据集,接下来我们对该数据集进行分析,判断学生是否适合继续深造
数据集特征展示
复制代码
1 GRE 成绩 (290 to 340)
2 TOEFL 成绩(92 to 120)
3 学校等级 (1 to 5)
4 自身的意愿 (1 to 5)
5 推荐信的力度 (1 to 5)
6 CGPA成绩 (6.8 to 9.92)
7 是否有研习经验 (0 or 1)
8 读硕士的意向 (0.34 to 0.97)
复制代码
1.导入包
复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os,sys
复制代码
2.导入并查看数据集
复制代码
df = pd.read_csv("D:\\machine-learning\\score\\Admission_Predict.csv",sep = ",")
print('There are ',len(df.columns),'columns')
for c in df.columns:
sys.stdout.write(str(c)+', '
复制代码
There are 9 columns
Serial No., GRE Score, TOEFL Score, University Rating, SOP, LOR , CGPA, Research, Chance of Admit ,
一共有9列特征
df.info()
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):
Serial No. 400 non-null int64
GRE Score 400 non-null int64
TOEFL Score 400 non-null int64
University Rating 400 non-null int64
SOP 400 non-null float64
LOR 400 non-null float64
CGPA 400 non-null float64
Research 400 non-null int64
Chance of Admit 400 non-null float64
dtypes: float64(4), int64(5)
memory usage: 28.2 KB
数据集信息:
1.数据有9个特征,分别是学号,GRE分数,托福分数,学校等级,SOP,LOR,CGPA,是否参加研习,进修的几率
2.数据集中没有空值
3.一共有400条数据
复制代码
# 整理列名称
df = df.rename(columns={'Chance of Admit ':'Chance of Admit'})
# 显示前5列数据
df.head()
复制代码
3.查看每个特征的相关性
复制代码
fig,ax = plt.subplots(figsize=(10,10))
sns.heatmap(df.corr(),ax=ax,annot=True,linewidths=0.05,fmt='.2f',cmap='magma')
plt.show()
复制代码
结论:1.最有可能影响是否读硕士的特征是GRE,CGPA,TOEFL成绩
2.影响相对较小的特征是LOR,SOP,和Research
4.数据可视化,双变量分析
4.1 进行Research的人数
复制代码
print("Not Having Research:",len(df[df.Research == 0]))
print("Having Research:",len(df[df.Research == 1]))
y = np.array([len(df[df.Research == 0]),len(df[df.Research == 1])])
x = np.arange(2)
plt.bar(x,y)
plt.title("Research Experience")
plt.xlabel("Canditates")
plt.ylabel("Frequency")
plt.xticks(x,('Not having research','Having research'))
plt.show()
复制代码
结论:进行research的人数是219,本科没有research人数是181
4.2 学生的托福成绩
复制代码
y = np.array([df['TOEFL Score'].min(),df['TOEFL Score'].mean(),df['TOEFL Score'].max()])
x = np.arange(3)
plt.bar(x,y)
plt.title('TOEFL Score')
plt.xlabel('Level')
plt.ylabel('TOEFL Score')
plt.xticks(x,('Worst','Average','Best'))
plt.show()
复制代码
结论:最低分92分,最高分满分,进修学生的英语成绩很不错
4.3 GRE成绩
复制代码
df['GRE Score'].plot(kind='hist',bins=200,figsize=(6,6))
plt.title('GRE Score')
plt.xlabel('GRE Score')
plt.ylabel('Frequency')
plt.show()
复制代码
结论:310和330的分值的学生居多
4.4 CGPA和学校等级的关系
复制代码
plt.scatter(df['University Rating'],df['CGPA'])
plt.title('CGPA Scores for University ratings')
plt.xlabel('University Rating')
plt.ylabel('CGPA')
plt.show()
复制代码
结论:学校越好,学生的GPA可能就越高
4.5 GRE成绩和CGPA的关系
复制代码
plt.scatter(df['GRE Score'],df['CGPA'])
plt.title('CGPA for GRE Scores')
plt.xlabel('GRE Score')
plt.ylabel('CGPA')
plt.show()
复制代码
结论:GPA基点越高,GRE分数越高,2者的相关性很大
4.6 托福成绩和GRE成绩的关系
复制代码
df[df['CGPA']>=8.5].plot(kind='scatter',x='GRE Score',y='TOEFL Score',color='red')
plt.xlabel('GRE Score')
plt.ylabel('TOEFL Score')
plt.title('CGPA >= 8.5')
plt.grid(True)
plt.show()
复制代码
结论:多数情况下GRE和托福成正相关,但是GRE分数高,托福一定高。
4.6 学校等级和是否读硕士的关系
复制代码
s = df[df['Chance of Admit'] >= 0.75]['University Rating'].value_counts().head(5)
plt.title('University Ratings of Candidates with an 75% acceptance chance')
s.plot(kind='bar',figsize=(20,10),cmap='Pastel1')
plt.xlabel('University Rating')
plt.ylabel('Candidates')
plt.show()
复制代码
结论:排名靠前的学校的学生,进修的可能性更大
4.7 SOP和GPA的关系
复制代码
plt.scatter(df['CGPA'],df['SOP'])
plt.xlabel('CGPA')
plt.ylabel('SOP')
plt.title('SOP for CGPA')
plt.show()
复制代码
结论: GPA很高的学生,选择读硕士的自我意愿更强烈
4.8 SOP和GRE的关系
复制代码
plt.scatter(df['GRE Score'],df['SOP'])
plt.xlabel('GRE Score')
plt.ylabel('SOP')
plt.title('SOP for GRE Score')
plt.show()
复制代码
结论:读硕士意愿强的学生,GRE分数较高
5.模型
5.1 准备数据集
复制代码
# 读取数据集
df = pd.read_csv('D:\\machine-learning\\score\\Admission_Predict.csv',sep=',')
serialNO = df['Serial No.'].values
df.drop(['Serial No.'],axis=1,inplace=True)
df = df.rename(columns={'Chance of Admit ':'Chance of Admit'})
# 分割数据集
y = df['Chance of Admit'].values
x = df.drop(['Chance of Admit'],axis=1)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
# 归一化数据
from sklearn.preprocessing import MinMaxScaler
scaleX = MinMaxScaler(feature_range=[0,1])
x_train[x_train.columns] = scaleX.fit_transform(x_train[x_train.columns])
x_test[x_test.columns] = scaleX.fit_transform(x_test[x_test.columns])
复制代码
5.2 回归
5.2.1 线性回归
复制代码
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
y_head_lr = lr.predict(x_test)
print('Real value of y_test[1]: '+str(y_test[1]) + ' -> predict value: ' + str(lr.predict(x_test.iloc[[1],:])))
print('Real value of y_test[2]: '+str(y_test[2]) + ' -> predict value: ' + str(lr.predict(x_test.iloc[[2],:])))
from sklearn.metrics import r2_score
print('r_square score: ',r2_score(y_test,y_head_lr))
y_head_lr_train = lr.predict(x_train)
print('r_square score(train data):',r2_score(y_train,y_head_lr_train))
复制代码
5.2.2 随机森林回归
复制代码
from sklearn.ensemble import RandomForestRegressor
rfr = RandomForestRegressor(n_estimators=100,random_state=42)
rfr.fit(x_train,y_train)
y_head_rfr = rfr.predict(x_test)
print('Real value of y_test[1]: '+str(y_test[1]) + ' -> predict value: ' + str(rfr.predict(x_test.iloc[[1],:])))
print('Real value of y_test[2]: '+str(y_test[2]) + ' -> predict value: ' + str(rfr.predict(x_test.iloc[[2],:])))
from sklearn.metrics import r2_score
print('r_square score: ',r2_score(y_test,y_head_rfr))
y_head_rfr_train = rfr.predict(x_train)
print('r_square score(train data):',r2_score(y_train,y_head_rfr_train))
复制代码
5.2.3 决策树回归
复制代码
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor(random_state=42)
dt.fit(x_train,y_train)
y_head_dt = dt.predict(x_test)
print('Real value of y_test[1]: '+str(y_test[1]) + ' -> predict value: ' + str(dt.predict(x_test.iloc[[1],:])))
print('Real value of y_test[2]: '+str(y_test[2]) + ' -> predict value: ' + str(dt.predict(x_test.iloc[[2],:])))
from sklearn.metrics import r2_score
print('r_square score: ',r2_score(y_test,y_head_dt))
y_head_dt_train = dt.predict(x_train)
print('r_square score(train data):',r2_score(y_train,y_head_dt_train))
复制代码
5.2.4 三种回归方法比较
复制代码
y = np.array([r2_score(y_test,y_head_lr),r2_score(y_test,y_head_rfr),r2_score(y_test,y_head_dt)])
x = np.arange(3)
plt.bar(x,y)
plt.title('Comparion of Regression Algorithms')
plt.xlabel('Regression')
plt.ylabel('r2_score')
plt.xticks(x,("LinearRegression","RandomForestReg.","DecisionTreeReg."))
plt.show()
复制代码
结论 : 回归算法中,线性回归的性能更优
5.2.5 三种回归方法与实际值的比较
复制代码
red = plt.scatter(np.arange(0,80,5),y_head_lr[0:80:5],color='red')
blue = plt.scatter(np.arange(0,80,5),y_head_rfr[0:80:5],color='blue')
green = plt.scatter(np.arange(0,80,5),y_head_dt[0:80:5],color='green')
black = plt.scatter(np.arange(0,80,5),y_test[0:80:5],color='black')
plt.title('Comparison of Regression Algorithms')
plt.xlabel('Index of candidate')
plt.ylabel('Chance of admit')
plt.legend([red,blue,green,black],['LR','RFR','DT','REAL'])
plt.show()
复制代码
结论:在数据集中有70%的候选人有可能读硕士,从上图来看还有些点没有很好的得到预测
5.3 分类算法
5.3.1 准备数据
复制代码
df = pd.read_csv('D:\\machine-learning\\score\\Admission_Predict.csv',sep=',')
SerialNO = df['Serial No.'].values
df.drop(['Serial No.'],axis=1,inplace=True)
df = df.rename(columns={'Chance of Admit ':'Chance of Admit'})
y = df['Chance of Admit'].values
x = df.drop(['Chance of Admit'],axis=1)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
from sklearn.preprocessing import MinMaxScaler
scaleX = MinMaxScaler(feature_range=[0,1])
x_train[x_train.columns] = scaleX.fit_transform(x_train[x_train.columns])
x_test[x_test.columns] = scaleX.fit_transform(x_test[x_test.columns])
# 如果chance >0.8, chance of admit 就是1,否则就是0
y_train_01 = [1 if each > 0.8 else 0 for each in y_train]
y_test_01 = [1 if each > 0.8 else 0 for each in y_test]
y_train_01 = np.array(y_train_01)
y_test_01 = np.array(y_test_01)
复制代码
5.3.2 逻辑回归
复制代码
from sklearn.linear_model import LogisticRegression
lrc = LogisticRegression()
lrc.fit(x_train,y_train_01)
print('score: ',lrc.score(x_test,y_test_01))
print('Real value of y_test_01[1]: '+str(y_test_01[1]) + ' -> predict value: ' + str(lrc.predict(x_test.iloc[[1],:])))
print('Real value of y_test_01[2]: '+str(y_test_01[2]) + ' -> predict value: ' + str(lrc.predict(x_test.iloc[[2],:])))
from sklearn.metrics import confusion_matrix
cm_lrc = confusion_matrix(y_test_01,lrc.predict(x_test))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_lrc,annot=True,linewidths=0.5,linecolor='red',fmt='.0f',ax=ax)
plt.title('Test for Test dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
from sklearn.metrics import recall_score,precision_score,f1_score
print('precision_score is : ',precision_score(y_test_01,lrc.predict(x_test)))
print('recall_score is : ',recall_score(y_test_01,lrc.predict(x_test)))
print('f1_score is : ',f1_score(y_test_01,lrc.predict(x_test)))
# Test for Train Dataset:
cm_lrc_train = confusion_matrix(y_train_01,lrc.predict(x_train))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_lrc_train,annot=True,linewidths=0.5,linecolor='blue',fmt='.0f',ax=ax)
plt.title('Test for Train dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
复制代码
结论:1.通过混淆矩阵,逻辑回归算法在训练集样本上,有23个分错的样本,有72人想进一步读硕士
2.在测试集上有7个分错的样本
5.3.3 支持向量机(SVM)
复制代码
from sklearn.svm import SVC
svm = SVC(random_state=1,kernel='rbf')
svm.fit(x_train,y_train_01)
print('score: ',svm.score(x_test,y_test_01))
print('Real value of y_test_01[1]: '+str(y_test_01[1]) + ' -> predict value: ' + str(svm.predict(x_test.iloc[[1],:])))
print('Real value of y_test_01[2]: '+str(y_test_01[2]) + ' -> predict value: ' + str(svm.predict(x_test.iloc[[2],:])))
from sklearn.metrics import confusion_matrix
cm_svm = confusion_matrix(y_test_01,svm.predict(x_test))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_svm,annot=True,linewidths=0.5,linecolor='red',fmt='.0f',ax=ax)
plt.title('Test for Test dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
from sklearn.metrics import recall_score,precision_score,f1_score
print('precision_score is : ',precision_score(y_test_01,svm.predict(x_test)))
print('recall_score is : ',recall_score(y_test_01,svm.predict(x_test)))
print('f1_score is : ',f1_score(y_test_01,svm.predict(x_test)))
# Test for Train Dataset:
cm_svm_train = confusion_matrix(y_train_01,svm.predict(x_train))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_svm_train,annot=True,linewidths=0.5,linecolor='blue',fmt='.0f',ax=ax)
plt.title('Test for Train dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
复制代码
结论:1.通过混淆矩阵,SVM算法在训练集样本上,有22个分错的样本,有70人想进一步读硕士
2.在测试集上有8个分错的样本
5.3.4 朴素贝叶斯
复制代码
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(x_train,y_train_01)
print('score: ',nb.score(x_test,y_test_01))
print('Real value of y_test_01[1]: '+str(y_test_01[1]) + ' -> predict value: ' + str(nb.predict(x_test.iloc[[1],:])))
print('Real value of y_test_01[2]: '+str(y_test_01[2]) + ' -> predict value: ' + str(nb.predict(x_test.iloc[[2],:])))
from sklearn.metrics import confusion_matrix
cm_nb = confusion_matrix(y_test_01,nb.predict(x_test))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_nb,annot=True,linewidths=0.5,linecolor='red',fmt='.0f',ax=ax)
plt.title('Test for Test dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
from sklearn.metrics import recall_score,precision_score,f1_score
print('precision_score is : ',precision_score(y_test_01,nb.predict(x_test)))
print('recall_score is : ',recall_score(y_test_01,nb.predict(x_test)))
print('f1_score is : ',f1_score(y_test_01,nb.predict(x_test)))
# Test for Train Dataset:
cm_nb_train = confusion_matrix(y_train_01,nb.predict(x_train))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_nb_train,annot=True,linewidths=0.5,linecolor='blue',fmt='.0f',ax=ax)
plt.title('Test for Train dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
复制代码
结论:1.通过混淆矩阵,朴素贝叶斯算法在训练集样本上,有20个分错的样本,有78人想进一步读硕士
2.在测试集上有7个分错的样本
5.3.5 随机森林分类器
复制代码
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100,random_state=1)
rfc.fit(x_train,y_train_01)
print('score: ',rfc.score(x_test,y_test_01))
print('Real value of y_test_01[1]: '+str(y_test_01[1]) + ' -> predict value: ' + str(rfc.predict(x_test.iloc[[1],:])))
print('Real value of y_test_01[2]: '+str(y_test_01[2]) + ' -> predict value: ' + str(rfc.predict(x_test.iloc[[2],:])))
from sklearn.metrics import confusion_matrix
cm_rfc = confusion_matrix(y_test_01,rfc.predict(x_test))
f,ax = plt.subplots(figsize=(5,5))
sns.heatmap(cm_rfc,annot=True,linewidths=0.5,linecolor='red',fmt='.0f',ax=ax)
plt.title('Test for Test dataset')
plt.xlabel('predicted y values')
plt.ylabel('real y value')
plt.show()
from sklearn.metrics import recall_score,precis