在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的。在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已。
场景
假设,有一些工作函数,用来对数据做不同的处理:
def work_bar(data): pass def work_foo(data): pass我们想在函数调用前/后输出日志,怎么办?
傻瓜解法
logging.info('begin call work_bar') work_bar(1) logging.info('call work_bar done')如果有多处代码调用呢?想想就怕!
函数包装
傻瓜解法无非是有太多代码冗余,每次函数调用都要写一遍logging。可以把这部分冗余逻辑封装到一个新函数里:
def smart_work_bar(data): logging.info('begin call: work_bar') work_bar(data) logging.info('call doen: work_bar')这样,每次调用smart_work_bar即可:
smart_work_bar(1) # ... smart_work_bar(some_data)通用闭包
看上去挺完美……然而,当work_foo也有同样的需要时,还要再实现一遍smart_work_foo吗?这样显然不科学呀!
别急,我们可以用闭包:
def log_call(func): def proxy(*args, **kwargs): logging.info('begin call: {name}'.format(name=func.func_name)) result = func(*args, **kwargs) logging.info('call done: {name}'.format(name=func.func_name)) return result return proxy这个函数接收一个函数对象(被代理函数)作为参数,返回一个代理函数。调用代理函数时,先输出日志,然后调用被代理函数,调用完成后再输出日志,最后返回调用结果。这样,不就达到通用化的目的了吗?——对于任意被代理函数func,log_call均可轻松应对。
smart_work_bar = log_call(work_bar) smart_work_foo = log_call(work_foo) smart_work_bar(1) smart_work_foo(1) # ... smart_work_bar(some_data) smart_work_foo(some_data)第1行中,
