使用Hypothesis生成测试数据
Hypothesis是Python的一个高级测试库。它允许编写测试用例时参数化,然后生成使测试失败的简单易懂的测试数据。可以用更少的工作在代码中发现更多的bug。
安装
pip install hypothesis
如何设计测试数据
通过介绍也许你还不了解它是干嘛的,没关系!我们举个例子。
首先,我有一个需要测试的函数:
def add(a, b): """实现加法运算""" return a + b
测试代码是这样的:
import unittest class AddTest(unittest.TestCase): def test_case1(self): c = add(1, 2) self.assertEqual(c, 3) def test_case2(self): c = add(0, 2) self.assertEqual(c, 2) def test_case3(self): c = add(-2, 2) self.assertEqual(c, 0) if __name__ == '__main__': unittest.main()
为了更全面的验证的 add()
函数,我必须设计足够多的 测试数据, 同样也需要很多条用例!
当然,为了测试足够多的数据,我们也可以将代码改称这样。
import unittest from random import randint class AddTest(unittest.TestCase): def test_case(self): for i in range(10): a = randint(-32768, 32767) b = randint(-32768, 32767) print("a->", a) print("b->", b) c1 = a + b c2 = add(a, b) self.assertEqual(c1, c2) if __name__ == '__main__': unittest.main()
通过调用 randint()
函数生成随机数。循环10次(也可以是100次,1000次),用更少的代码做更多的测试,测试的数据越多,发现bug的可能性越大。
测试结果如下:
> python test_hypothesis_demo.py a-> 11503 b-> -784 a-> -31548 b-> 13057 a-> 22033 b-> 3618 a-> -32249 b-> 28025 a-> -15429 b-> 31055 a-> 16095 b-> 13445 a-> -31536 b-> 14606 a-> 18655 b-> -18039 a-> 17923 b-> -12079 a-> -9256 b-> -26440 . ------------------------ Ran 1 test in 0.002s OK
用 hypothesis生成测试数据
上面的测试数据很难随机到 边界值,除非我手动设计数据,而且用for循环也不是太好的设计。是时候让hypothesis登场了。
import unittest from hypothesis import given, settings import hypothesis.strategies as st class