前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。

判断问题SQL

判断SQL是否有问题时可以通过两个表象进行判断:

  • 系统级别表象
    • CPU消耗严重
    • IO等待严重
    • 页面响应时间过长
    • 应用的日志出现超时等错误

可以使用sar命令,top命令查看当前系统状态。
file

也可以通过Prometheus、Grafana等监控工具观察系统状态。(感兴趣的可以翻看我之前的文章)
image

  • SQL语句表象
    • 冗长
    • 执行时间过长
    • 从全表扫描获取数据
    • 执行计划中的rows、cost很大

冗长的SQL都好理解,一段SQL太长阅读性肯定会差,而且出现问题的频率肯定会更高。更进一步判断SQL问题就得从执行计划入手,如下所示:
image

执行计划告诉我们本次查询走了全表扫描Type=ALL,rows很大(9950400)基本可以判断这是一段"有味道"的SQL。

获取问题SQL

不同数据库有不同的获取方法,以下为目前主流数据库的慢查询SQL获取工具

  • MySQL
    • 慢查询日志
    • 测试工具loadrunner
    • Percona公司的ptquery等工具
  • Oracle
    • AWR报告
    • 测试工具loadrunner等
    • 相关内部视图如v$sql、v$session_wait等
    • GRID CONTROL监控工具
  • 达梦数据库
    • AWR报告
    • 测试工具loadrunner等
    • 达梦性能监控工具(dem)
    • 相关内部视图如v$sql、v$session_wait等

SQL编写技巧

SQL编写有以下几个通用的技巧:

• 合理使用索引

索引少了查询慢;索引多了占用空间大,执行增删改语句的时候需要动态维护索引,影响性能
选择率高(重复值少)且被where频繁引用需要建立B树索引;一般join列需要建立索引;复杂文档类型查询采用全文索引效率更好;索引的建立要在查询和DML性能之间取得平衡;复合索引创建时要注意基于非前导列查询的情况

• 使用UNION ALL替代UNION

UNION ALL的执行效率比UNION高,UNION执行时需要排重;UNION需要对数据进行排序

• 避免select * 写法

执行SQL时优化器需要将 * 转成具体的列;每次查询都要回表,不能走覆盖索引。

• JOIN字段建议建立索引

一般JOIN字段都提前加上索引

• 避免复杂SQL语句

提升可阅读性;避免慢查询的概率;可以转换成多个短查询,用业务端处理

• 避免where 1=1写法

• 避免order by rand()类似写法

RAND()导致数据列被多次扫描

SQL优化

执行计划

完成SQL优化一定要先读执行计划,执行计划会告诉你哪些地方效率低,哪里可以需要优化。我们以MYSQL为例,看看执行计划是什么。(每个数据库的执行计划都不一样,需要自行了解)
explain sql
image

字段 解释
id 每个被独立执行的操作标识,标识对象被操作的顺序,id值越大,先被执行,如果相同,执行顺序从上到下