简介 机器学习在全球范围内越来越受欢迎和使用。 它已经彻底改变了某些应用程序的构建方式,并且可能会继续成为我们日常生活中一个巨大的(并且正在增加的)部分。 没有什么包装且机器学习并不简单。 它对许多人来说似乎非常复杂并常常令人生畏。 像谷歌这样的公司将自己的机器学习概念与开发人员联系起来,在谷歌帮助下让他们逐渐迈出第一步,故TensorFlow的框架诞生了。 TensorFlow为何物? TensorFlow是由谷歌使用Python和C++开发的开源机器学习框架。 它可以帮助开发人员轻松获取数据,准备和训练模型,预测未来状态,以及执行大规模机器学习。 有了它,我们可以训练和运行深度神经网络的内容,诸如光学字符识别,图像识别/分类,自然语言处理等。 张量与操作 TensorFlow基于计算图,你可以将其想象为具有节点和边的经典图。 每个节点被称为操作,它们将零个或多个张量输入并产生零个或多个张量输出。 操作可以非常简单,例如基本的添加,但它们也可以非常复杂。 张量被描绘为图的边缘,并且是核心数据单元。 当我们将它们提供给操作时,我们在这些张量上执行不同的功能。 它们可以具有单个或多个维度,有时也称为它们的等级(标量:等级0,向量:等级1,矩阵:等级2)。 这些数据受到操作的影响通过张量传递到计算图中,故而称为TensorFlow。 张量可以以任意数量的维度存储数据,并且有三种主要类型的张量:占位符,变量和常量。 安装TensorFlow 使用Maven,安装TensorFlow就像包含依赖项一样简单: org.tensorflow tensorflow 1.13.1 如果你的设备支持GPU功能,可以添加以下依赖: org.tensorflow libtensorflow 1.13.1 org.tensorflow libtensorflow_jni_gpu 1.13.1 你可以使用TensorFlow对象来检查当前操作的TensorFlow的版本。 System.out.println(TensorFlow.version()); TensorFlow的JavaAPI Java API TensorFlow提供包含在org.tensorflow包中。 它目前是实验性的,因此不能保证其稳定性。 需要注意的是TensorFlow唯一完全支持的语言是Python,Java API几乎没有什么功能。 API向我们介绍了新的类,接口,枚举和异常。 类 通过API引入的新类是: Graph:表示TensorFlow计算的数据流图; Operation:在Tensors上执行计算的Graph节点; OperationBuilder:Operations的构建器类; Output:操作产生的张量的符号句柄; SavedModelBundle:表示从存储加载的模型; SavedModelBundle.Loader:提供加载SavedModel的选项; Server:进程内TensorFlow服务器,用于分布式训练; Session:图形执行的驱动程序; Session.Run:输出执行会话时获得的张量和元数据; Session.Runner:运行操作并评估张量; Shape:由操作产生的可能部分已知的张量形状; Tensor:静态类型的多维数组,其元素是由T描述的类型; TensorFlow:描述TensorFlow运行时的静态实用程序方法; Tensors:用于创建张量对象的类型安全工厂方法; 枚举 DataType:将张量中的元素类型表示为枚举; 接口 Operand:由TensorFlow操作的操作数实现的接口; 异常 TensorFlowException:执行TensorFlow图时抛出的未经检查的异常 如果我们将所有这些与Python中的tf模块进行比较将发现存在明显的区别。 Java API没有几乎相同的功能,至少目前如此。 图(Graphs) 如前所述,TensorFlow基于计算图 - 其中org.tensorflow.Graph是Java的实现。 注意:它的实例是线程安全的,尽管我们需要在完成它之后显式释放Graph使用的资源。 让我们从一个空图开始: Graph graph = new Graph(); 该对象是空的,所以这个图表意义不大。 要对它做任何操作,我们首先需要使用Operations加载它。 我们使用opBuilder()方法来加载它,它返回一个OperationBuilder对象,一旦我们调用.build()方法,它就会将操作添加到我们的图形中。 常量 让我们在图表中添加一个常量: Operation x = graph.opBuilder("Const", "x") .setAttr("dtype", DataType.FLOAT) .setAttr("value", Tensor.create(3.0f)) .build(); 占位符 占位符是变量的“类型”,声明时没有赋值,他们的值将在之后进行分配。 这允许我们使用没有任何实际数据的操作来构建图形: Operation y = graph.opBuilder("Placeholder", "y") .setAttr("dtype", DataType.FLOAT) .build(); 函数 最后为了解决这个问题,我们需要添加某些函数。 这些可以像乘法,除法或加法一样简单,也可以像矩阵乘法一样复杂。 和之前一样,我们使用.opBuilder()方法定义函数: Operation xy = graph.opBuilder("Mul", "xy") .addInput(x.output(0)) .addInput(y.output(0)) .build(); 注意:我们使用input(0)作为张量可以有多个输出。 图形可视化 遗憾的是,Java API还没有包含任何允许像Python中一样可视化图形的工具。 会话(Sessions) 如前所述,Session是Graph的驱动程序。 它封装了执行Operation和Graph计算张量(tensors)的环境。 这意味着我们构建的图(graph)中的张量(tensors)实际上并没有任何值,因为我们没有在会话(session)中运行图形(graph)。 我们首先将图表添加到会话(session)中: Session session = new Session(graph); 我们的操作知识简单地将x于y相乘,为了运行我们的图(graph)并得到计算结果,我们需要使用fetch()获取到xy的操作并为其提供x和y的值: Tensor tensor = session.runner().fetch("xy").feed("x", Tensor.create(5.0f)).feed("y", Tensor.create(2.0f)).run().get(0); System.out.println(tensor.floatValue()); 运行这段代码将产生的结果如下: 10.0f Java当中加载Python中Saving模块 这可能听起来有点奇怪,但由于Python是唯一受到良好支持的语言,因此Java API仍然没有保存模型的功能。 这意味着Java API仅用于服务用例,至少在TensorFlow完全支持之前。 目前至少我们可以使用SavedModelBundle类在Python中训练和保存模型,然后使用Java加载它们来为它们提供服务: SavedModelBundle model = SavedModelBundle.load("./model", "serve"); Tensor tensor = model.session().runner().fetch("xy").feed("x", Tensor.create(5.0f)).feed("y", Tensor.create(2.0f)).run().get(0); System.out.println(tensor.floatValue()); 结论 TensorFlow是一个功能强大且广泛使用的框架。 它不断得到改进,并最近被引入新语言:包括Java和JavaScript。 尽管Java API还没有像TensorFlow在Python中那么多的功能,但它仍然可以作为向Java开发人员介绍TensorFlow的一个很好的开始。 原文链接:https://stackabuse.com/how-to-use-tensorflow-with-java/ 作 者:David Landup 译 者:klein ------ 9月福利,关注公众号 ​ 后台回复:004,领取8月翻译集锦! ​ 往期福利回复:001,002, 003即可领取!https://www.cnblogs.com/liululee/p/11801781.html